146 research outputs found

    Association between 5-Year clinical outcome in patients with nonmedically evacuated mild blast traumatic brain injury and clinical measures collected within 7 days postinjury in combat

    Get PDF
    Importance: Although previous work has examined clinical outcomes in combat-deployed veterans, questions remain regarding how symptoms evolve or resolve following mild blast traumatic brain injury (TBI) treated in theater and their association with long-term outcomes. Objective: To characterize 5-year outcome in patients with nonmedically evacuated blast concussion compared with combat-deployed controls and understand what clinical measures collected acutely in theater are associated with 5-year outcome. Design, Setting, and Participants: A prospective, longitudinal cohort study including 45 service members with mild blast TBI within 7 days of injury (mean 4 days) and 45 combat deployed nonconcussed controls was carried out. Enrollment occurred in Afghanistan at the point of injury with evaluation of 5-year outcome in the United States. The enrollment occurred from March to September 2012 with 5-year follow up completed from April 2017 to May 2018. Data analysis was completed from June to July 2018. Exposures: Concussive blast TBI. All patients were treated in theater, and none required medical evacuation. Main Outcomes and Measures: Clinical measures collected in theater included measures for concussion symptoms, posttraumatic stress disorder (PTSD) symptoms, depression symptoms, balance performance, combat exposure intensity, cognitive performance, and demographics. Five-year outcome evaluation included measures for global disability, neurobehavioral impairment, PTSD symptoms, depression symptoms, and 10 domains of cognitive function. Forward selection multivariate regression was used to determine predictors of 5-year outcome for global disability, neurobehavior impairment, PTSD, and cognitive function. Results: Nonmedically evacuated patients with concussive blast injury (n = 45; 44 men, mean [SD] age, 31 [5] years) fared poorly at 5-year follow-up compared with combat-deployed controls (n = 45; 35 men; mean [SD] age, 34 [7] years) on global disability, neurobehavioral impairment, and psychiatric symptoms, whereas cognitive changes were unremarkable. Acute predictors of 5-year outcome consistently identified TBI diagnosis with contribution from acute concussion and mental health symptoms and select measures of cognitive performance depending on the model for 5-year global disability (area under the curve following bootstrap validation [AUCBV] = 0.79), neurobehavioral impairment (correlation following bootstrap validation [RBV] = 0.60), PTSD severity (RBV = 0.36), or cognitive performance (RBV = 0.34). Conclusions and Relevance: Service members with concussive blast injuries fared poorly at 5-year outcome. The results support a more focused acute screening of mental health following TBI diagnosis as strong indicators of poor long-term outcome. This extends prior work examining outcome in patients with concussive blast injury to the larger nonmedically evacuated population

    Duration of Posttraumatic Amnesia Predicts Neuropsychological and Global Outcome in Complicated Mild Traumatic Brain Injury.

    Get PDF
    OBJECTIVES: Examine the effects of posttraumatic amnesia (PTA) duration on neuropsychological and global recovery from 1 to 6 months after complicated mild traumatic brain injury (cmTBI). PARTICIPANTS: A total of 330 persons with cmTBI defined as Glasgow Coma Scale score of 13 to 15 in emergency department, with well-defined abnormalities on neuroimaging. METHODS: Enrollment within 24 hours of injury with follow-up at 1, 3, and 6 months. MEASURES: Glasgow Outcome Scale-Extended, California Verbal Learning Test II, and Controlled Oral Word Association Test. Duration of PTA was retrospectively measured with structured interview at 30 days postinjury. RESULTS: Despite all having a Glasgow Coma Scale Score of 13 to 15, a quarter of the sample had a PTA duration of greater than 7 days; half had PTA duration of 1 of 7 days. Both cognitive performance and Extended Glasgow Outcome Scale outcomes were strongly associated with time since injury and PTA duration, with those with PTA duration of greater than 1 week showing residual moderate disability at 6-month assessment. CONCLUSIONS: Findings reinforce importance of careful measurement of duration of PTA to refine outcome prediction and allocation of resources to those with cmTBI. Future research would benefit from standardization in computed tomographic criteria and use of severity indices beyond Glasgow Coma Scale to characterize cmTBI

    Amantadine Did Not Positively Impact Cognition in Chronic Traumatic Brain Injury: A Multi-Site, Randomized, Controlled Trial

    Get PDF
    Despite limited evidence to support the use of amantadine to enhance cognitive function after traumatic brain injury (TBI), the clinical use for this purpose is highly prevalent and is often based on inferred belief systems. The aim of this study was to assess effect of amantadine on cognition among individuals with a history of TBI and behavioral disturbance using a parallel-group, randomized, double-blind, placebo-controlled trial of amantadine 100 mg twice-daily versus placebo for 60 days. Included in the study were 119 individuals with two or more neuropsychological measures greater than 1 standard deviation below normative means from a larger study of 168 individuals with chronic TBI (>6 months post-injury) and irritability. Cognitive function was measured at treatment days 0, 28, and 60 with a battery of neuropsychological tests. Composite indices were generated: General Cognitive Index (included all measures), a Learning Memory Index (learning/memory measures), and Attention/Processing Speed Index (attention and executive function measures). Repeated-measures analysis of variance revealed statistically significant between-group differences favoring the placebo group at day 28 for General Cognitive Index (p = 0.002) and Learning Memory Index (p = 0.001), but not Attention/Processing Speed Index (p = 0.25), whereas no statistically significant between-group differences were found at day 60. There were no statistically significant between-group differences on adverse events. Cognitive function in individuals with chronic TBI is not improved by amantadine 100 mg twice-daily. In the first 28 days of use, amantadine may impede cognitive processing. However, the effect size was small and mean scores for both groups were generally within expectations for persons with history of complicated mild-to-severe TBI, suggesting that changes observed across assessments may not have functional significance. The use of amantadine to enhance cognitive function is not supported by these findings

    A Manual for the Glasgow Outcome Scale-Extended Interview

    Get PDF
    The Glasgow Outcome Scale-Extended (GOSE) has become one of the most widely used outcome instruments to assess global disability and recovery after traumatic brain injury. Achieving consistency in the application of the assessment remains a challenge, particularly in multi-center studies involving many assessors. We present a manual for the GOSE interview that is designed to support both single- and multi-center studies and promote inter-rater agreement. Many patients fall clearly into a particular category; however, patients may have outcomes that are on the borderline between adjacent categories, and cases can present other challenges for assessment. The Manual includes the general principles of assessment, advice on administering each section of the GOSE interview, and guidance on “borderline” and “difficult” cases. Finally, we discuss the properties of the GOSE, including strengths and limitations, and outline recommendations for assessor training, accreditation, and monitoring

    COMT Val 158 Met polymorphism is associated with post-traumatic stress disorder and functional outcome following mild traumatic brain injury

    Get PDF
    Mild traumatic brain injury (mTBI) results in variable clinical trajectories and outcomes. The source of variability remains unclear, but may involve genetic variations, such as single nucleotide polymorphisms (SNPs). A SNP in catechol-o-methyltransferase (COMT) is suggested to influence development of post-traumatic stress disorder (PTSD), but its role in TBI remains unclear. Here, we utilize the Transforming Research and Clinical Knowledge in Traumatic Brain Injury Pilot (TRACK-TBI Pilot) study to investigate whether the COMT Val158Met polymorphism is associated with PTSD and global functional outcome as measured by the PTSD Checklist - Civilian Version and Glasgow Outcome Scale Extended (GOSE), respectively. Results in 93 predominately Caucasian subjects with mTBI show that the COMT Met158 allele is associated with lower incidence of PTSD (univariate odds ratio (OR) of 0.25, 95% CI [0.09-0.69]) and higher GOSE scores (univariate OR 2.87, 95% CI [1.20-6.86]) 6-months following injury. The COMT Val158Met genotype and PTSD association persists after controlling for race (multivariable OR of 0.29, 95% CI [0.10-0.83]) and pre-existing psychiatric disorders/substance abuse (multivariable OR of 0.32, 95% CI [0.11-0.97]). PTSD emerged as a strong predictor of poorer outcome on GOSE (multivariable OR 0.09, 95% CI [0.03-0.26]), which persists after controlling for age, GCS, and race. When accounting for PTSD in multivariable analysis, the association of COMT genotype and GOSE did not remain significant (multivariable OR 1.73, 95% CI [0.69-4.35]). Whether COMT genotype indirectly influences global functional outcome through PTSD remains to be determined and larger studies in more diverse populations are needed to confirm these findings

    Pathological Computed Tomography Features Associated with Adverse Outcomes after Mild Traumatic Brain Injury:A TRACK-TBI Study with External Validation in CENTER-TBI

    Get PDF
    Importance: A head computed tomography (CT) with positive results for acute intracranial hemorrhage is the gold-standard diagnostic biomarker for acute traumatic brain injury (TBI). In moderate to severe TBI (Glasgow Coma Scale [GCS] scores 3-12), some CT features have been shown to be associated with outcomes. In mild TBI (mTBI; GCS scores 13-15), distribution and co-occurrence of pathological CT features and their prognostic importance are not well understood. Objective: To identify pathological CT features associated with adverse outcomes after mTBI. Design, Setting, and Participants: The longitudinal, observational Transforming Research and Clinical Knowledge in Traumatic Brain Injury (TRACK-TBI) study enrolled patients with TBI, including those 17 years and older with GCS scores of 13 to 15 who presented to emergency departments at 18 US level 1 trauma centers between February 26, 2014, and August 8, 2018, and underwent head CT imaging within 24 hours of TBI. Evaluations of CT imaging used TBI Common Data Elements. Glasgow Outcome Scale-Extended (GOSE) scores were assessed at 2 weeks and 3, 6, and 12 months postinjury. External validation of results was performed via the Collaborative European NeuroTrauma Effectiveness Research in Traumatic Brain Injury (CENTER-TBI) study. Data analyses were completed from February 2020 to February 2021. Exposures: Acute nonpenetrating head trauma. Main Outcomes and Measures: Frequency, co-occurrence, and clustering of CT features; incomplete recovery (GOSE scores <8 vs 8); and an unfavorable outcome (GOSE scores <5 vs ≥5) at 2 weeks and 3, 6, and 12 months. Results: In 1935 patients with mTBI (mean [SD] age, 41.5 [17.6] years; 1286 men [66.5%]) in the TRACK-TBI cohort and 2594 patients with mTBI (mean [SD] age, 51.8 [20.3] years; 1658 men [63.9%]) in an external validation cohort, hierarchical cluster analysis identified 3 major clusters of CT features: contusion, subarachnoid hemorrhage, and/or subdural hematoma; intraventricular and/or petechial hemorrhage; and epidural hematoma. Contusion, subarachnoid hemorrhage, and/or subdural hematoma features were associated with incomplete recovery (odds ratios [ORs] for GOSE scores <8 at 1 year: TRACK-TBI, 1.80 [95% CI, 1.39-2.33]; CENTER-TBI, 2.73 [95% CI, 2.18-3.41]) and greater degrees of unfavorable outcomes (ORs for GOSE scores <5 at 1 year: TRACK-TBI, 3.23 [95% CI, 1.59-6.58]; CENTER-TBI, 1.68 [95% CI, 1.13-2.49]) out to 12 months after injury, but epidural hematoma was not. Intraventricular and/or petechial hemorrhage was associated with greater degrees of unfavorable outcomes up to 12 months after injury (eg, OR for GOSE scores <5 at 1 year in TRACK-TBI: 3.47 [95% CI, 1.66-7.26]). Some CT features were more strongly associated with outcomes than previously validated variables (eg, ORs for GOSE scores <5 at 1 year in TRACK-TBI: neuropsychiatric history, 1.43 [95% CI.98-2.10] vs contusion, subarachnoid hemorrhage, and/or subdural hematoma, 3.23 [95% CI 1.59-6.58]). Findings were externally validated in 2594 patients with mTBI enrolled in the CENTER-TBI study. Conclusions and Relevance: In this study, pathological CT features carried different prognostic implications after mTBI to 1 year postinjury. Some patterns of injury were associated with worse outcomes than others. These results support that patients with mTBI and these CT features need TBI-specific education and systematic follow-up

    COMT Val 158 Met polymorphism is associated with nonverbal cognition following mild traumatic brain injury

    Get PDF
    Mild traumatic brain injury (mTBI) results in variable clinical outcomes, which may be influenced by genetic variation. A single-nucleotide polymorphism in catechol-o-methyltransferase (COMT), an enzyme which degrades catecholamine neurotransmitters, may influence cognitive deficits following moderate and/or severe head trauma. However, this has been disputed, and its role in mTBI has not been studied. Here, we utilize the Transforming Research and Clinical Knowledge in Traumatic Brain Injury Pilot (TRACK-TBI Pilot) study to investigate whether the COMT Val (158) Met polymorphism influences outcome on a cognitive battery 6 months following mTBI--Wechsler Adult Intelligence Test Processing Speed Index Composite Score (WAIS-PSI), Trail Making Test (TMT) Trail B minus Trail A time, and California Verbal Learning Test, Second Edition Trial 1-5 Standard Score (CVLT-II). All patients had an emergency department Glasgow Coma Scale (GCS) of 13-15, no acute intracranial pathology on head CT, and no polytrauma as defined by an Abbreviated Injury Scale (AIS) score of ≥3 in any extracranial region. Results in 100 subjects aged 40.9 (SD 15.2) years (COMT Met (158) /Met (158) 29 %, Met (158) /Val (158) 47 %, Val (158) /Val (158) 24 %) show that the COMT Met (158) allele (mean 101.6 ± SE 2.1) associates with higher nonverbal processing speed on the WAIS-PSI when compared to Val (158) /Val (158) homozygotes (93.8 ± SE 3.0) after controlling for demographics and injury severity (mean increase 7.9 points, 95 % CI [1.4 to 14.3], p = 0.017). The COMT Val (158) Met polymorphism did not associate with mental flexibility on the TMT or with verbal learning on the CVLT-II. Hence, COMT Val (158) Met may preferentially modulate nonverbal cognition following uncomplicated mTBI.Registry: ClinicalTrials.gov Identifier NCT01565551

    DRD2 C957T polymorphism is associated with improved 6-month verbal learning following traumatic brain injury

    Get PDF
    Traumatic brain injury (TBI) often leads to heterogeneous clinical outcomes, which may be influenced by genetic variation. A single-nucleotide polymorphism (SNP) in the dopamine D2 receptor (DRD2) may influence cognitive deficits following TBI. However, part of the association with DRD2 has been attributed to genetic variability within the adjacent ankyrin repeat and kinase domain containing 1 protein (ANKK1). Here, we utilize the Transforming Research and Clinical Knowledge in Traumatic Brain Injury Pilot (TRACK-TBI Pilot) study to investigate whether a novel DRD2 C957T polymorphism (rs6277) influences outcome on a cognitive battery at 6 months following TBI-California Verbal Learning Test (CVLT-II), Wechsler Adult Intelligence Test Processing Speed Index Composite Score (WAIS-PSI), and Trail Making Test (TMT). Results in 128 Caucasian subjects show that the rs6277 T-allele associates with better verbal learning and recall on CVLT-II Trials 1-5 (T-allele carrier 52.8 ± 1.3 points, C/C 47.9 ± 1.7 points; mean increase 4.9 points, 95% confidence interval [0.9 to 8.8]; p = 0.018), Short-Delay Free Recall (T-carrier 10.9 ± 0.4 points, C/C 9.7 ± 0.5 points; mean increase 1.2 points [0.1 to 2.5]; p = 0.046), and Long-Delay Free Recall (T-carrier 11.5 ± 0.4 points, C/C 10.2 ± 0.5 points; mean increase 1.3 points [0.1 to 2.5]; p = 0.041) after adjusting for age, education years, Glasgow Coma Scale, presence of acute intracranial pathology on head computed tomography scan, and genotype of the ANKK1 SNP rs1800497 using multivariable regression. No association was found between DRD2 C947T and non-verbal processing speed (WAIS-PSI) or mental flexibility (TMT) at 6 months. Hence, DRD2 C947T (rs6277) may be associated with better performance on select cognitive domains independent of ANKK1 following TBI

    Diagnosing Level of Consciousness: Limits of the Glasgow Coma Scale Total Score

    Full text link
    In nearly all clinical and research contexts, the initial severity of a traumatic brain injury (TBI) is measured using the Glasgow Coma Scale (GCS) total score. The GCS total score however, may not accurately reflect level of consciousness, a critical indicator of injury severity. We investigated the relationship between GCS total scores and level of consciousness in a consecutive sample of 2455 adult subjects assessed with the GCS 69,487 times as part of the multi-center Transforming Research and Clinical Knowledge in TBI (TRACKTBI) study. We assigned each GCS subscale score combination a level of consciousness rating based on published criteria for the following disorders of consciousness (DoC) diagnoses: coma, vegetative state/ unresponsive wakefulness syndrome, minimally conscious state, and post-traumatic confusional state, and present our findings using summary statistics and four illustrative cases. Participants had the following characteristics: mean (standard deviation) age 41.9 (17.6) years, 69% male, initial GCS 3–8 = 13%; 9–12 = 5%; 13–15 = 82%. All GCS total scores between 4–14 were associated with more than one DoC diagnosis; the greatest variability was observed for scores of 7–11. Further, a wide range of total scores was associated with identical DoC diagnoses. Importantly, a diagnosis of coma was only possible with GCS total scores of 3–6. The GCS total score does not accurately reflect level of consciousness based on published DoC diagnostic criteria. To improve the classification of patients with TBI and to inform the design of future clinical trials, clinicians and investigators should consider individual subscale behaviors and more comprehensive assessments when evaluating TBI severityTRACK-TB

    DRD2 C957T polymorphism is associated with improved 6-month verbal learning following traumatic brain injury

    Get PDF
    Traumatic brain injury (TBI) often leads to heterogeneous clinical outcomes, which may be influenced by genetic variation. A single-nucleotide polymorphism (SNP) in the dopamine D2 receptor (DRD2) may influence cognitive deficits following TBI. However, part of the association with DRD2 has been attributed to genetic variability within the adjacent ankyrin repeat and kinase domain containing 1 protein (ANKK1). Here, we utilize the Transforming Research and Clinical Knowledge in Traumatic Brain Injury Pilot (TRACK-TBI Pilot) study to investigate whether a novel DRD2 C957T polymorphism (rs6277) influences outcome on a cognitive battery at 6 months following TBI-California Verbal Learning Test (CVLT-II), Wechsler Adult Intelligence Test Processing Speed Index Composite Score (WAIS-PSI), and Trail Making Test (TMT). Results in 128 Caucasian subjects show that the rs6277 T-allele associates with better verbal learning and recall on CVLT-II Trials 1-5 (T-allele carrier 52.8 ± 1.3 points, C/C 47.9 ± 1.7 points; mean increase 4.9 points, 95% confidence interval [0.9 to 8.8]; p = 0.018), Short-Delay Free Recall (T-carrier 10.9 ± 0.4 points, C/C 9.7 ± 0.5 points; mean increase 1.2 points [0.1 to 2.5]; p = 0.046), and Long-Delay Free Recall (T-carrier 11.5 ± 0.4 points, C/C 10.2 ± 0.5 points; mean increase 1.3 points [0.1 to 2.5]; p = 0.041) after adjusting for age, education years, Glasgow Coma Scale, presence of acute intracranial pathology on head computed tomography scan, and genotype of the ANKK1 SNP rs1800497 using multivariable regression. No association was found between DRD2 C947T and non-verbal processing speed (WAIS-PSI) or mental flexibility (TMT) at 6 months. Hence, DRD2 C947T (rs6277) may be associated with better performance on select cognitive domains independent of ANKK1 following TBI
    • …
    corecore